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1   Overview

This document describes how to build an image for an i.MX board by using a Yocto Project build environment. It
describes the i.MX release layer and i.MX-specific usage.

The Yocto Project is an open-source collaboration focused on embedded Linux OS development. For more
information on Yocto Project, see the Yocto Project page: www.yoctoproject.org/. There are several documents
on the Yocto Project home page that describe in detail how to use the system. To use the basic Yocto
Project without the i.MX release layer, follow the instructions in the Yocto Project Quick Start found at https://
docs.yoctoproject.org/brief-yoctoprojectqs/index.html.

The FSL Yocto Project Community BSP (found at freescale.github.io) is a development community outside NXP
providing support for i.MX boards in the Yocto Project environment. i.MX joined the Yocto Project community
providing a release based on the Yocto Project framework. Information specific to FSL community BSP use is
available on the community web page. This document is an extension of the community BSP documentation.

Files used to build an image are stored in layers. Layers contain different types of customizations and come
from different sources. Some of the files in a layer are called recipes. Yocto Project recipes contain the
mechanism to retrieve source code, build and package a component. The following lists show the layers used in
this release.

i.MX release layer

• meta-imx
– meta-imx-bsp: updates for meta-freescale, poky, and meta-openembedded layers
– meta-imx-sdk: updates for meta-freescale-distros
– meta-imx-ml: Machine learning recipes
– meta-imx-v2x: V2X recipes only used for i.MX 8DXL
– meta-imx-cockpit: Cockpit recipes for i.MX 8QuadMax

Yocto Project community layers

• meta-freescale: Provides support for the base and for i.MX Arm reference boards.
• meta-freescale-3rdparty: Provides support for 3rd party and partner boards.
• meta-freescale-distro: Additional items to aid in development and exercise board capabilities.
• fsl-community-bsp-base: Often renamed to base. Provides base configuration for FSL Community BSP.
• meta-openembedded: Collection of layers for the OE-core universe. See layers.openembedded.org/.
• poky: Basic Yocto Project items in Poky. See the Poky README for details.
• meta-browser: Provides several browsers.
• meta-qt6: Provides Qt 6.
• meta-timesys: Provides Vigiles tools for monitoring and notification of BSP vulnerabilities (CVEs).

References to community layers in this document are for all the layers in Yocto Project except meta-imx. i.MX
boards are configured in the meta-imx and meta-freescale layers. This includes U-Boot, the Linux kernel,
and reference board-specific details.

i.MX provides an additional layer called the i.MX BSP Release, named meta-imx, to integrate a new i.MX
release with the FSL Yocto Project Community BSP. The meta-imx layer aims to release the updated and new
Yocto Project recipes and machine configurations for new releases that are not yet available on the existing
meta-freescale and meta-freescale-distro layers in the Yocto Project. The contents of the i.MX BSP
Release layer are recipes and machine configurations. In many test cases, other layers implement recipes
or include files and the i.MX release layer provides updates to the recipes by either appending to a current
recipe, or including a component and updating with patches or source locations. Most i.MX release layer recipes
are very small because they use what the community has provided and update what is needed for each new
package version that is unavailable in the other layers.
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The i.MX BSP Release layer also provides image recipes that include all the components needed for a system
image to boot, making it easier for the user. Components can be built individually or through an image recipe,
which pulls in all the components required in an image into one build process.

The i.MX kernel and U-Boot releases are accessed through i.MX public Git servers. However, several
components are released as packages on the i.MX mirror. The package-based recipes pull files from the i.MX
mirror instead of a Git location and generate the package needed.

All packages that are released as binary are built with hardware floating point enabled as specified by the
DEFAULTTUNE defined in each machine configuration file. Software floating point packages are not provided
starting with the jethro releases.

Release LF6.6.23_2.0.0 is released for Yocto Project 5.0 (Scarthgap). The same recipes for Yocto Project 5.0
are going to be upstreamed and made available on the next release of the Yocto Project release. The Yocto
Project release cycle lasts roughly six months.

The recipes and patches in meta-imx are upstreamed to the community layers. After that is done for a
particular component, the files in meta-imx are no longer needed and the FSL Yocto Project Community BSP
will provide support. The community supports i.MX reference boards, community boards, and third-party boards.

1.1  End user licence agreement
During the setup environment process of the NXP Yocto Project BSP, the NXP End User License Agreement
(EULA) is displayed. To continue to use the i.MX Proprietary software, users must agree to the conditions of this
license. The agreement to the terms allows the Yocto Project build to untar packages from the i.MX mirror.

Note:

Read this license agreement carefully during the setup process, because once accepted, all further work in the
i.MX Yocto Project environment is tied to this accepted agreement.

1.2  References
i.MX has multiple families supported in software. The following are the listed families and SoCs per family. The
i.MX Linux Release Notes describes which SoC is supported in the current release. Some previously released
SoCs might be buildable in the current release but not validated if they are at the previous validated level.

• i.MX 6 Family: 6QuadPlus, 6Quad, 6DualLite, 6SoloX, 6SLL, 6UltraLite, 6ULL, 6ULZ
• i.MX 7 Family: 7Dual, 7ULP
• i.MX 8 Family: 8QuadMax, 8QuadPlus, 8ULP
• i.MX 8M Family: 8M Plus, 8M Quad, 8M Mini, 8M Nano
• i.MX 8X Family: 8QuadXPlus, 8DXL
• i.MX 9 Family: i.MX 93, i.MX 95

This release includes the following references and additional information.

• i.MX Linux Release Notes (IMXLXRN) - Provides the release information.
• i.MX Linux User's Guide (IMXLUG) - Provides the information on installing U-Boot and Linux OS and using

i.MX-specific features.
• i.MX Yocto Project User's Guide (IMXLXYOCTOUG) - Describes the board support package for NXP

development systems using Yocto Project to set up host, install tool chain, and build source code to create
images.

• i.MX Machine Learning User's Guide (IMXMLUG) - Provides the machine learning information.
• i.MX Linux Reference Manual (IMXLXRM) - Provides the information on Linux drivers for i.MX.
• i.MX Graphics User's Guide (IMXGRAPHICUG) - Describes the graphics features.
• i.MX Porting Guide (IMXXBSPPG) - Provides the instructions on porting the BSP to a new board.
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• i.MX VPU Application Programming Interface Linux Reference Manual (IMXVPUAPI) - Provides the reference
information on the VPU API on i.MX 6 VPU.

• Harpoon User's Guide (HRPNUG) - Presents the Harpoon release for i.MX 8M device family.
• i.MX Digital Cockpit Hardware Partitioning Enablement for i.MX 8QuadMax (IMXDCHPE) - Provides the i.MX

Digital Cockpit hardware solution for i.MX 8QuadMax.
• i.MX DSP User's Guide (IMXDSPUG) - Provides the information on the DSP for i.MX 8.
• i.MX 8M Plus Camera and Display Guide (IMX8MPCDUG) - Provides the information on the ISP Independent

Sensor Interface API for the i.MX 8M Plus.
• EdgeLock Enclave Hardware Security Module API (RM00284) - This document is a software reference

description of the API provided by the i.MX 8ULP, i.MX 93, and i.MX 95 Hardware Security Module (HSM)
solutions for the EdgeLock Enclave (ELE) Platform.

The quick start guides contain basic information on the board and setting it up. They are on the NXP website.

• SABRE Platform Quick Start Guide (IMX6QSDPQSG)
• i.MX 6UltraLite EVK Quick Start Guide (IMX6ULTRALITEQSG)
• i.MX 6ULL EVK Quick Start Guide (IMX6ULLQSG)
• i.MX 7Dual SABRE-SD Quick Start Guide (SABRESDBIMX7DUALQSG)
• i.MX 8M Quad Evaluation Kit Quick Start Guide (IMX8MQUADEVKQSG)
• i.MX 8M Mini Evaluation Kit Quick Start Guide (8MMINIEVKQSG)
• i.MX 8M Nano Evaluation Kit Quick Start Guide (8MNANOEVKQSG)
• i.MX 8QuadXPlus Multisensory Enablement Kit Quick Start Guide (IMX8QUADXPLUSQSG)
• i.MX 8QuadMax Multisensory Enablement Kit Quick Start Guide (IMX8QUADMAXQSG)
• i.MX 8M Plus Evaluation Kit Quick Start Guide (IMX8MPLUSQSG)
• i.MX 8ULP EVK Quick Start Guide (IMX8ULPQSG)
• i.MX 8ULP EVK9 Quick Start Guide (IMX8ULPEVK9QSG)
• i.MX 93 EVK Quick Start Guide (IMX93EVKQSG)
• i.MX 93 9x9 QSB Quick Start Guide (93QSBQSG)

Documentation is available online at nxp.com.

• i.MX 6 information is at nxp.com/iMX6series.
• i.MX SABRE information is at nxp.com/imxSABRE.
• i.MX 6UltraLite information is at nxp.com/iMX6UL.
• i.MX 6ULL information is at nxp.com/iMX6ULL.
• i.MX 7Dual information is at nxp.com/iMX7D.
• i.MX 7ULP information is at nxp.com/imx7ulp.
• i.MX 8 information is at nxp.com/imx8.
• i.MX 6ULZ information is at nxp.com/imx6ulz.
• i.MX 93 information is at nxp.com/imx93.
• i.MX 95 information is at nxp.com/imx95.

2   Features

i.MX Yocto Project Release layers have the following features:

• Linux kernel recipe
– The kernel recipe resides in the recipes-kernel folder and integrates an i.MX kernel from the source

downloaded from the i.MX Git server. This is done automatically by the recipes in the project.
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– LF6.6.23_2.0.0 is a Linux kernel released for the Yocto Project.
• U-Boot recipe

– The U-Boot recipe resides in the recipes-bsp folder and integrates an i.MX uboot-imx.git from the
source downloaded from the i.MX Git server.

– i.MX release LF6.6.23_2.0.0 for the i.MX 6, i.MX 7, i.MX 8, i.MX 93, and i.MX 95 devices uses an updated
v2023.04 i.MX U-Boot version. This version has not been updated for all i.MX hardware.

– The i.MX Yocto Project Community BSP uses u-boot-fslc from the mainline, but this is only supported
by the U-Boot community and is not supported with the L6.6.23 kernel.

– The i.MX Yocto Project Community BSP updates the U-Boot versions frequently, so the information above
might change as new U-Boot versions are integrated to meta-freescale layers and updates from i.MX u-
boot-imx releases are integrated into the mainline.

• Graphics recipes
– Graphics recipes reside in recipes-graphics folder.
– Graphics recipes integrate the i.MX graphics package release. For the i.MX boards that have a GPU, the
imx-gpu-viv recipes package the graphic components for each DISTRO: frame buffer (FB), XWayland,
Wayland backend, and Weston compositor (Weston). Only i.MX 6 and i.MX 7 support Frame Buffer.

– Xorg-driver integrates the xserver-xorg.
• i.MX package recipes
firmware-imx, imx-sc-fimrware, and other packages reside in recipes-bsp and pull from the i.MX
mirror to build and package into image recipes.

• Multimedia recipes
– Multimedia recipes reside in recipes-multimedia.
– Proprietary packages like imx-codec and imx-parser have recipes pull from the i.MX mirror to build and

package into image recipes.
– Opensource packages have recipes that pull from the public Git Repos on GitHub.
– Some recipes are provided for codecs that are restricted. Packages for these are not on the i.MX mirror.

These packages are available separately. Contact your i.MX Marketing representative to acquire these.
• Core recipes

Some recipes for rules, such as udev, provide updated i.MX rules to be deployed in the system. These
recipes are usually updates of policy and are used for customization only. Releases only provide updates if
needed.

• Demo recipes
Demonstration recipes reside in the meta-imx-sdk directory. This layer contains image recipes and recipes
for customization, such as touch calibration, or recipes for demonstration applications.

• Machine learning recipes
Machine learning recipes reside in the meta-imx-ml directory. This layer contains machine learning recipes
for packages like tensorflow-lite, onnx, and so on.

• Cockpit recipes
Cockpit recipes reside in meta-imx-cockpit and are supported on the i.MX 8QuadMax using the
imx-8qm-cockpit-mek machine configuration.
In the layer meta-nxp-demo-experience, more demonstration and tool recipes are included. This layer is
included in all released full images.

3   Host Setup

To get the Yocto Project expected behavior in a Linux Host Machine, the packages and utilities described
below must be installed. An important consideration is the hard disk space required in the host machine. For
example, when building on a machine running Ubuntu, the minimum hard disk space required is about 50 GB.
It is recommended that at least 120 GB is provided, which is enough to compile all backends together. For
building machine learning components, at least 250 GB is recommended.
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The recommended minimum Ubuntu version is 20.04 or later. The latest release supports Chromium v91, which
requires an increase to the ulimit (number of open files) to 4098.

3.1  Docker
i.MX is now releasing docker setup scripts in imx-docker. Follow the instructions in the readme for setting up a
host build machine using docker.

In addition docker on board is enabled with standard manifest by including the meta-virtualization layer
on i.MX 8 only. This creates a headless system for installing docker containers from external docker hubs.

3.2  Host packages
A Yocto Project build requires specific packages to be installed for the build that are documented under the
Yocto Project. Go to Yocto Project Quick Start and check for the packages that must be installed for your build
machine.

Essential Yocto Project host packages are:

$ sudo apt install gawk wget git diffstat unzip texinfo gcc build-essential
 chrpath socat cpio python3 python3-pip python3-pexpect xz-utils debianutils
 iputils-ping python3-git python3-jinja2 python3-subunit zstd liblz4-tool file
 locales libacl1

The configuration tool uses the default version of grep that is on your build machine. If there is a different
version of grep in your path, it may cause builds to fail. One workaround is to rename the special version to
something not containing "grep".

3.3  Setting up the Repo utility
Repo is a tool built on top of Git that makes it easier to manage projects that contain multiple repositories, which
do not need to be on the same server. Repo complements very well the layered nature of the Yocto Project,
making it easier for users to add their own layers to the BSP.

To install the “repo” utility, perform these steps:

1. Create a bin folder in the home directory.

$ mkdir ~/bin (this step may not be needed if the bin folder already exists)
$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

2. Add the following line to the .bashrc file to ensure that the ~/bin folder is in your PATH variable.

export PATH=~/bin:$PATH

4   Yocto Project Setup

First, make sure that Git is set up properly with the commands below:

$ git config --global user.name "Your Name"
$ git config --global user.email "Your Email"
$ git config --list

The i.MX Yocto Project BSP Release directory contains a sources directory, which contains the recipes used
to build one or more build directories, and a set of scripts used to set up the environment.
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The recipes used to build the project come from both the community and i.MX. The Yocto Project layers are
downloaded to the sources directory. This sets up the recipes that are used to build the project.

The following example shows how to download the i.MX Yocto Project Community BSP recipe layers. For this
example, a directory called imx-yocto-bsp is created for the project. Any name can be used instead of this.

$ mkdir imx-yocto-bsp
$ cd imx-yocto-bsp
$ repo init -u https://github.com/nxp-imx/imx-manifest
-b imx-linux-scarthgap -m imx-6.6.23-2.0.0.xml
$ repo sync

Note:

https://github.com/nxp-imx/imx-manifest/tree/imx-linux-scarthgap has a list of all manifest files supported in this
release.

When this process is completed, the source code is checked out into the directory imx-yocto-bsp/sources.

You can perform Repo synchronization, with the command repo sync, periodically to update to the latest
code.

If errors occur during Repo initialization, try deleting the .repo directory and running the Repo initialization
command again.

The repo init is configured for the latest patches in the line. Follow the instructions in  index: imx-manifest.git
to retrieve the original GA. Otherwise, GA plus patches are picked up by default. To pick up previous releases
from zeus base, add -m (release manifest name) at the end of Repo initialization line and it will retrieve previous
releases. Examples are provided in the README file in the link provided above.

5   Image Build

This section provides the detailed information along with the process for building an image.

5.1  Build configurations
i.MX provides a script, imx-setup-release.sh, that simplifies the setup for i.MX machines. To use the script,
the name of the specific machine to be built for needs to be specified as well as the desired graphical backend.
The script sets up a directory and the configuration files for the specified machine and backend.

In the meta-imx layer, i.MX provides new or updated machine configurations that overlay the meta-
freescale machine configurations. These files are copied into the meta-freescale/conf/machine
directory by the imx-setup-release.sh script. The following are i.MX machine configuration files that can
be selected. Check either the release notes or the machine directory for the latest additions.

i.MX 6 i.MX 7 i.MX 8 i.MX 9

• imx6qpsabresd
• imx6ulevk
• imx6ulz-14x14-
evk

• imx6ull14x14evk
• imx6ull9x9evk
• imx6dlsabresd
• imx6qsabresd
• imx6solosabresd

• imx7dsabresd
• imx7ulpevk

• imx8qmmek
• imx8qxpc0mek
• imx8mqevk
• imx8mm-lpddr4-evk
• imx8mm-ddr4-evk
• imx8mn-lpddr4-evk
• imx8mn-ddr4-evk
• imx8mp-lpddr4-evk
• imx8mp-ddr4-evk

• imx93evk
• imx93-11x11-
lpddr4x-evk

• imx93-9x9-lpddr4-
qsb

• imx93-14x14-
lpddr4x-evk

• imx95-19x19-
lpddr5-evk
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i.MX 6 i.MX 7 i.MX 8 i.MX 9
• imx6sxsabresd
• imx6sllevk

• imx8dxla1-lpddr4-evk
• imx8dxlb0-lpddr4-evk
• imx8dxlb0-ddr3l-evk
• imx8mnddr3levk
• imx8ulp-lpddr4-evk
• imx8ulp-9x9-lpddr4-
evk

• imx95-15x15-
lpddr4x-evk

• imx91-11x11-
lpddr4-evk

Each build folder must be configured in such way that they only use one distro. Each time the variable
DISTRO_FEATURES is changed, a clean build folder is needed. Each graphical backend Frame Buffer,
Wayland, and XWayland each have a distro configuration. If no DISTRO file is specified, the XWayland distro
is set up as default. Distro configurations are saved in the local.conf file in the DISTRO setting and are
displayed when the bitbake is running. In past releases, we used the poky distro and customized versions and
providers in our layer.conf but a custom distro is a better solution. When the default poky distro is used, the
default community configuration is used. As an i.MX release, we prefer to have a set of configurations that NXP
supports and has been testing.

Here are the list of DISTRO configurations. Note that fsl-imx-fb is not supported on i.MX 8 and fsl-imx-
x11 is not supported anymore.

• fsl-imx-wayland: Pure Wayland graphics.
• fsl-imx-xwayland: Wayland graphics and X11. X11 applications using EGL are not supported.
• fsl-imx-fb: Frame Buffer graphics - no X11 or Wayland. Frame Buffer is not supported on i.MX 8 and i.MX

9.

Users are welcome to create their own distro file based on one of these to customize their environment without
updating the local.conf to set preferred versions and providers.

The syntax for the imx-setup-release.sh script is shown below:

$ DISTRO=<distro name> MACHINE=<machine name> source imx-setup-release.sh -b
 <build dir>

DISTRO=<distro configuration name> is the distro, which configures the build environment and it is stored in
meta-imx/meta-imx-sdk/conf/distro.

MACHINE=<machine configuration name> is the machine name which points to the configuration file in conf/
machine in meta-freescale and meta-imx.

-b <build dir> specifies the name of the build directory created by the imx-setup-release.sh script.

When the script is run, it prompts the user to accept the EULA. Once the EULA is accepted, the acceptance is
stored in local.conf inside each build folder and the EULA acceptance query is no longer displayed for that
build folder.

After the script runs, the working directory is the one just created by the script, specified with the -b option. A
conf folder is created containing the files bblayers.conf and local.conf.

The <build dir>/conf/bblayers.conf file contains all the metalayers used in the i.MX Yocto Project
release.

The local.conf file contains the machine and distro specifications:

MACHINE ??= 'imx7ulpevk'
DISTRO ?= 'fsl-imx-xwayland'
ACCEPT_FSL_EULA = "1"
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The MACHINE configuration can be changed by editing this file, if necessary.

ACCEPT_FSL_EULA in the local.conf file indicates that you have accepted the conditions of the EULA.

In the meta-imx layer, consolidated machine configurations (imx6qpdlsolox.conf and imx6ul7d.conf)
are provided for i.MX 6 and i.MX 7 machines. i.MX uses these to build a common image with all the device trees
in one image for testing. Do not use these machines for anything other than testing.

5.2  Choosing an i.MX Yocto project image
The Yocto Project provides some images that are available on different layers. Poky provides some images,
meta-freescale and meta-freescale-distro provide others, and additional image recipes are provided
in the meta-imx layer. The following table lists various key images, their contents, and the layers that provide
the image recipes.

Image name Target Provided by layer

core-image-minimal A small image that only allows a device to boot. poky

core-image-base A console-only image that fully supports the target device
hardware.

poky

core-image-sato An image with Sato, a mobile environment and visual
style for mobile devices. The image supports a Sato
theme and uses Pimlico applications. It contains a
terminal, an editor and a file manager.

poky

imx-image-core An i.MX image with i.MX test applications to be used for
Wayland backends. This image is used by our daily core
testing.

meta-imx/meta-sdk

fsl-image-machine-
test

An FSL Community i.MX core image with console
environment - no GUI interface.

meta-freescale-distro

imx-image-
multimedia

Builds an i.MX image with a GUI without any Qt content. meta-imx/meta-sdk

imx-image-full Builds an opensource Qt 6 image with Machine Learning
features. These images are only supported for i.MX SoC
with hardware graphics. They are not supported on the
i.MX 6UltraLite, i.MX 6UltraLiteLite, i.MX 6SLL, i.MX
7Dual, i.MX 8MNanoLite, or i.MX 8DXL

meta-imx/meta-sdk

Table 1. i.MX Yocto project images

5.3  Building an image
The Yocto Project build uses the bitbake command. For example, bitbake <component> builds the named
component. Each component build has multiple tasks, such as fetching, configuration, compilation, packaging,
and deploying to the target rootfs. The bitbake image build gathers all the components required by the image
and build in order of the dependency per task. The first build is the toolchain along with the tools required for the
components to build.

The following command is an example on how to build an image:

$ bitbake imx-image-multimedia
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5.4  Bitbake options
The bitbake command used to build an image is bitbake <image name>. Additional parameters can be
used for specific activities described below. Bitbake provides various useful options for developing a single
component. To run with a BitBake parameter, the command looks like this:

bitbake  <parameter> <component>

<component> is a desired build package.

The following table provides some BitBake options.

BitBake parameter Description

-c fetch Fetches if the downloads state is not marked as done.

-c cleanall Cleans the entire component build directory. All the changes in the build directory are
lost. The rootfs and state of the component are also cleared. The component is also
removed from the download directory.

-c deploy Deploys an image or component to the rootfs.

-k Continues building components even if a build break occurs.

-c compile -f It is not recommended that the source code under the temporary directory is changed
directly, but if it is, the Yocto Project might not rebuild it unless this option is used. Use
this option to force a recompile after the image is deployed.

-g Lists a dependency tree for an image or component.

-DDD Turns on debug 3 levels deep. Each D adds another level of debug.

-s, --show-versions Shows the current and preferred versions of all recipes.

Table 2. BitBake options

5.5  U-Boot configuration
U-Boot configurations are defined in the main machine configuration file. The configuration is specified by using
the UBOOT_CONFIG settings. This requires setting UBOOT_CONFIG in local.conf. Otherwise, the U-Boot
build uses SD boot by default.

These can be built separately by using the following commands (change MACHINE to the correct target).
Multiple U-Boot configurations can be built with one command by putting spaces between U-Boot
configurations.

The following are the U-Boot configurations for each boards. i.MX 6 and i.MX 7 boards support SD without OP-
TEE and with OP-TEE:

• uboot_config_imx95evk="sd fspi"
• uboot_config_imx93evk="sd fspi"
• uboot_config_imx8mpevk="sd fspi ecc"
• uboot_config_imx8mnevk="sd fspi"
• uboot_config_imx8mmevk="sd fspi"
• uboot_config_imx8mqevk="sd"
• uboot_config_imx8dxlevk="sd fspi"
• uboot_conifg_imx8dxmek="sd fspi"
• uboot_config_imx8qxpc0mek="sd fspi"
• uboot_config_imx8qxpmek="sd fspi"
• uboot_config_imx8qmmek="sd fspi"
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• uboot_config_imx8ulpevk="sd fspi"
• uboot_config_imx8ulp-9x9-lpddr4-evk="sd fspi"
• uboot_config_imx6qsabresd="sd sata sd-optee"
• uboot_config_imx6qsabreauto="sd sata eimnor spinor nand sd-optee"
• uboot_config_imx6dlsabresd="sd epdc sd-optee"
• uboot_config_imx6dlsabreauto="sd eimnor spinor nand sd-optee"
• uboot_config_imx6solosabresd="sd sd-optee"
• uboot_config_imx6solosabreauto="sd eimnor spinor nand sd-optee"
• uboot_config_imx6sxsabresd="sd emmc qspi2 m4fastup sd-optee"
• uboot_config_imx6sxsabreauto="sd qspi1 nand sd-optee"
• uboot_config_imx6qpsabreauto="sd sata eimnor spinor nand sd-optee"
• uboot_config_imx6qpsabresd="sd sata sd-optee"
• uboot_config_imx6sllevk="sd epdc sd-optee"
• uboot_config_imx6ulevk="sd emmc qspi1 sd-optee"
• uboot_config_imx6ul9x9evk="sd qspi1 sd-optee"
• uboot_config_imx6ull14x14evk="sd emmc qspi1 nand sd-optee"
• uboot_config_imx6ull9x9evk="sd qspi1 sd-optee"
• uboot_config_imx6ulz14x14evk="sd emmc qspi1 nand sd-optee"
• uboot_config_imx7dsabresd="sd epdc qspi1 nand sd-optee"
• uboot_config_imx7ulpevk="sd emmc sd-optee"

To build with any U-Boot configuration, perform the following steps.

With just one U-Boot configuration:

$ echo "UBOOT_CONFIG = \"eimnor\"" >> conf/local.conf

With multiple U-Boot configurations:

$ echo "UBOOT_CONFIG = \"sd eimnor\"" >> conf/local.conf

$ MACHINE=<machine name> bitbake -c deploy u-boot-imx

Note:  i.MX 8 uses imx-boot that pulls in U-Boot.

5.6  Build scenarios
The following are build setup scenarios for various configurations.

Set up the manifest and populate the Yocto Project layer sources with these commands:

$ mkdir imx-yocto-bsp
$ cd imx-yocto-bsp
$ repo init -u https://github.com/nxp-imx/imx-manifest
-b imx-linux-scarthgap -m imx-6.6.23-2.0.0.xml
$ repo sync

The following sections give some specific examples. Replace the machine names and the backends specified
to customize the commands.
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5.6.1  Frame Buffer image on i.MX 6QuadPlus SABRE-AI

$ DISTRO=fsl-imx-fb MACHINE=imx6qpsabresd source imx-setup-release.sh –b build-
fb
$ bitbake imx-image-multimedia

This builds a multimedia image with a frame buffer backend.

5.6.2  XWayland image on i.MX 8QuadXPlus MEK

$ DISTRO=fsl-imx-xwayland MACHINE=imx8qxpmek source imx-setup-release.sh -b
 build-xwayland
$ bitbake imx-image-full

This builds an XWayland image with Qt 6 and machine learning features. To build without Qt 6 and machine
learning, use imx-image-multimedia instead.

5.6.3  Wayland image on i.MX 8M Quad EVK

$ DISTRO=fsl-imx-wayland MACHINE=imx8mqevk source imx-setup-release.sh -b build-
wayland
$ bitbake imx-image-multimedia

This builds a Weston Wayland image with multimedia without Qt 6.

5.6.4  Restarting a build environment

If a new terminal window is opened or the machine is rebooted after a build directory is set up, the setup
environment script should be used to set up the environment variables and run a build again. The full imx-
setup-release.sh is not needed.

$ source setup-environment <build-dir>

5.6.5  Chromium Browser on XWayland, and Wayland

The Yocto Project community has Chromium recipes for the Wayland version Chromium Browser for i.MX SoC
with GPU hardware. NXP does not support or test the patches from the community. This section describes how
to integrate Chromium into your rootfs and enable hardware accelerated rendering of WebGL. The Chromium
browser requires additional layers such as meta-browser added in the imx-release-setup.sh script
automatically.

In local.conf for XWayland or Wayland, add Chromium into your image. X11 is not supported.

CORE_IMAGE_EXTRA_INSTALL += "chromium-ozone-wayland"

5.6.6  Qt 6 and QtWebEngine browsers

Qt 6 has both a commercial and an open source license. When building in Yocto Project, the open source
license is the default. Make sure to understand the differences between these licenses and choose
appropriately. After custom Qt 6 development has started on the open source license, it cannot be used with the
commercial license. Work with a legal representative to understand the differences between these licenses.

Note:
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Building QtWebEngine is not compatible with the meta-chromium layer used by the release.

If you are using the NXP build setup, remove meta-chromium from bblayers.conf:

# Commented out due to incompatibility with qtwebengine
#BBLAYERS += "${BSPDIR}/sources/meta-browser/meta-chromium"

There are four Qt 6 browsers available. QtWebEngine browsers can be found in:

• /usr/share/qt6/examples/webenginewidgets/StyleSheetbrowser
• /usr/share/qt6/examples/webenginewidgets/Simplebrowser
• /usr/share/qt6/examples/webenginewidgets/Cookiebrowser
• /usr/share/qt6/examples/webengine/quicknanobrowser

All three browsers can be run by going to the directory above and running the executable found there.
Touchscreen can be enabled by adding the parameters -plugin evdevtouch:/dev/input/event0 to the
executable.

./quicknanobrowser -plugin evdevtouch:/dev/input/event0

QtWebengine only works on SoC with GPU graphics hardware on i.MX 6, i.MX 7, i.MX 8, and i.MX 9.

To include Qtwebengine in the image, put the following in local.conf or in the image recipe.

IMAGE_INSTALL:append = " packagegroup-qt6-webengine"

5.6.7  NXP eIQ machine learning

The meta-ml layer is the integration of NXP eIQ machine learning, which was formerly released as a separate
meta-imx-machinelearning layer and is now integrated into the standard BSP image (imx-image-full).
Many of the features require Qt 6. In case of using other configuration than imx-image-full, put the following
in local.conf:

IMAGE_INSTALL:append = " packagegroup-imx-ml"

To install the NXP eIQ packages to the SDK, put the following in local.conf:

TOOLCHAIN_TARGET_TASK:append = " tensorflow-lite-dev onnxruntime-dev"

Note:

TOOLCHAIN_TARGET_TASK_append variable installs the packages to the SDK only, not to the image.

To add the model configurations and input data for the OpenCV DNN demos, put the following in local.conf:

PACKAGECONFIG:append:pn-opencv_mx8 = " tests tests-imx"

5.6.8  Systemd

Systemd is enabled as the default initialization manager. To disable systemd as default, go to the fsl-imx-
preferred-env.inc and comment out the systemd section.
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5.6.9  Multilib enablement

For i.MX 8, building 32-bit applications on 64-bit OS can be supported using the multilib configuration. Multilib
offers the ability to build libraries with different target optimizations or architecture formats and combine
these together into one system image. Multilib is enabled by adding the MULTILIB, DEFAULTTUNE, and
IMAGE_INSTALL declaration to your local.conf file. Multilib is not supported with the debian package
management. It requires the RPM system. Comment out the two package management lines in local.conf to
go to the default RPM.

The MULTILIBS declaration is typically lib32 or lib64 and needs to be defined in
MULTILIB_GLOBAL_VARIANTS variable as follows:

MULTILIBS = "multilib:lib32"

DEFAULTTUNE must be one of the AVAILTUNES values for this alternative library type as follows:

DEFAULTTUNE:virtclass-multilib-lib32 = "armv7athf-neon"

IMAGE_INSTALL will be added to the image, the 32-bit libraries required by the specific application as follows:

IMAGE_INSTALL:append = " lib32-bash"

For the case on i.MX 8, building a 32-bit application support would require the following statements
in local.conf. This configuration specifies a 64-bit machine as the main machine type and adds
multilib:lib32, where those libraries are compiled with the armv7athf-neon tune, and then includes to
all images the lib32 packages.

MACHINE = imx8mqevk
# Define multilib target
require conf/multilib.conf
MULTILIBS = "multilib:lib32"
DEFAULTTUNE:virtclass-multilib-lib32 = "armv7athf-neon"
# Add the multilib packages to the image
IMAGE_INSTALL:append = " lib32-glibc lib32-libgcc lib32-libstdc++"

Disable the deb packaging to avoid any processing errors. Check in local.conf, and comment if there are:

PACKAGE_CLASSES = "package_deb"
EXTRA_IMAGE_FEATURES += "package-management"

5.6.10  OP-TEE enablement

OP-TEE requires three components: OP-TEE OS, OP-TEE client, and OP-TEE test. In addition, the kernel and
U-Boot have configurations. The OP-TEE OS resides in the bootloader while the OP-TEE client and test reside
in the rootfs.

OP-TEE is enabled by default in this release. To disable OP-TEE, go to the meta-imx/meta-imx-bsp/
conf/layer.conf file and comment out the DISTRO_FEATURES_append for OP-TEE and uncomment the
removed line.

5.6.11  Building Jailhouse

Jailhouse is a static partitioning Hypervisor based on Linux OS. It is supported on i.MX 8M Plus, i.MX 8M Nano,
i.MX 8M Quad EVK, and i.MX 8M Mini EVK boards.
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To enable Jailhouse build, add the following line to local.conf:

DISTRO_FEATURES:append = " jailhouse"

In U-Boot, run run jh_netboot or jh_mmcboot. It loads the dedicated DTB for Jailhouse usage. Taking i.MX
8M Quad as an example, after Linux OS boots up:

#insmod jailhouse.ko
#./jailhouse enable imx8mq.cell

For more details about Jailhouse on i.MX 8, see the i.MX Linux User's Guide (IMXLUG).

5.6.12  Package management

The default package management with Yocto Project is rpm. The i.MX distro now enables debian as the
package management. This can be easily turned off by adding the PACKAGE_CLASSES set to package_rpm
in the local.conf, or creating a custom distro without the debian package feed PACKAGE_CLASSES =
"package_deb" .

With the addition of the debian package feed, a sources.list can be added to /etc/apt that links in
Debian's package feed. This allows users to install packages not provided in the image without having to add
them to a Yocto image. Because this package feed is not generated by the i.MX Yocto build process, there is
no guarantee each package will work with the right dependencies but it allows simpler tools to be provided.
Software that is complex and has more dependencies on specific versions might have issues with an external
package feed.

6   Image Deployment

Complete filesystem images are deployed to <build directory>/tmp/deploy/images. An image is,
for the most part, specific to the machine set in the environment setup. Each image build creates a U-Boot,
a kernel, and an image type based on the IMAGE_FSTYPES defined in the machine configuration file. Most
machine configurations provide an SD card image (.wic) and a rootfs image (.tar). The SD card image contains
a partitioned image (with U-Boot, kernel, rootfs, etc.) suitable for booting the corresponding hardware.

6.1  Flashing an SD card image
An SD card image file .wic contains a partitioned image (with U-Boot, kernel, rootfs, etc.) suitable for booting
the corresponding hardware. To flash an SD card image, run the following command:

zstdcat <image_name>.wic.zst | sudo dd of=/dev/sd<partition> bs=1M conv=fsync

For more information on flashing, see Section "Preparing an SD/MMC card to boot" in the i.MX Linux User's
Guide (IMXLUG). For NXP eIQ machine learning applications, an additional free disk space is required
(approximately 1 GB). It is defined by adding IMAGE_ROOTFS_EXTRA_SPACE variable into the local.conf
file before the Yocto building process. See the Yocto Project Mega-Manual.

7   Customization

There are three scenarios to build and customize on i.MX Linux OS:

• Building i.MX Yocto Project BSP and validating on an i.MX reference board. The directions in this document
describe this method in details.
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• Customizing kernel and creating a custom board and device tree with kernel and U-Boot. For more details on
how to build an SDK and set up a host machine for building the kernel and U-Boot only outside of the Yocto
Project build environment, see Chapter "How to Build U-Boot and Kernel in Standalone Environment" in the 
i.MX User's Guide (IMXLUG).

• Customizing a distribution adding or removing packaging from the BSP provided for i.MX Linux releases by
creating a custom Yocto Project layer. i.MX provides multiple demo examples to show a custom layer on top
of an i.MX BSP release . The remaining sections in this document provides instructions for creating a custom
DISTRO and board configuration.

7.1  Creating a custom distro
A custom distro can configure a custom build environment. The distro files released fsl-imx-wayland, fsl-
imx-xwayland, and fsl-imx-fb all show configurations for specific graphical backends. Distros can also
be used to configure other parameters such as kernel, U-Boot, and GStreamer. The i.MX distro files are set to
create a custom build environment required for testing our i.MX Linux OS BSP releases.

It is recommended for each customer to create their own distro file and use that for setting providers, versions,
and custom configurations for their build environment. A distro is created by copying an existing distro file, or
including one like poky.conf and adding additional changes, or including one of the i.MX distros and using
that as a starting point.

7.2  Creating a custom board configuration
Vendors who are developing reference boards may want to add their board to the FSL Community BSP.
Having the new machine supported by the FSL Community BSP makes it easy to share source code with the
community, and allows for feedback from the community.

The Yocto Project makes it easy to create and share a BSP for a new i.MX based board. The upstreaming
process should start when a Linux OS kernel and a bootloader are working and tested for that machine. It is
highly important to have a stable Linux kernel and bootloader (for example, U-Boot) to be pointed to in the
machine configuration file, to be the default one used for that machine.

Another important step is to determinate a maintainer for the new machine. The maintainer is the one
responsible for keeping the set of main packages working for that board. The machine maintainer should keep
the kernel and bootloader updated, and the user-space packages tested for that machine.

The steps needed are listed below.

1. Customize the kernel config files as needed. The kernel configuration file is location in arch/arm/
configs and the vendor kernel recipe should customize a version loaded through the kernel recipe.

2. Customize U-Boot as needed. See the i.MX BSP Porting Guide (IMXBSPPG) for details on this.
3. Assign the maintainer of the board. This maintainer makes sure that files are updated as needed, so the

build always works.
4. Set up the Yocto Project build as described in the Yocto Project community instructions as shown below.

Use the community master branch.
a. Download the needed host package, depending on your host Linux OS distribution, from Yocto Project

Quick Start.
b. Download Repo with the command:

$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo

c. Create a directory to keep everything in. Any directory name can be used. This document uses imx-
community-bsp.

$ mkdir imx-community-bsp
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d. Execute the following command:

$ cd imx-community-bsp

e. Initialize the Repo with the master branch of the Repo.

$ repo init -u https://github.com/Freescale/fsl-community-bsp-platform -b
 master

f. Get the recipes that will be used to build.

$ repo sync

g. Set up the environment with the following command:

$ source setup-environment build

5. Choose a similar machine file in fsl-community-bsp/sources/meta-freescale-3rdparty/conf/
machine and copy it, using a name indicative of your board. Edit the new board file with the information
about your board. Change the name and description at least. Add MACHINE_FEATURE.

6. Test your changes with the latest community master branch, making sure everything works well. Use at
least core-image-minimal.

$ bitbake core-image-minimal

7. Prepare the patches. Follow the Recipe Style Guide and git.yoctoproject.org/cgit/cgit.cgi/meta-freescale/
tree/README in the section entitled Contributing.

8. Upstream into meta-freescale-3rdparty. To upstream, send the patches to meta-
freescale@yoctoproject.org.

7.3  Monitoring security vulnerabilities in your BSP
The monitoring of Common Vulnerability and Exposures (CVE) can be accomplished with NXP enabled Vigiles
tools from Timesys. Vigiles is a vulnerability monitoring and management tool that provides build-time Yocto
CVE analysis of target images. It does this by collecting metadata about the software used in the Yocto Project
BSP and comparing it against a CVE database that integrates information on CVEs from various sources,
including NIST, Ubuntu, and several others.

A high-level overview of the detected vulnerabilities is returned, and a full detailed analysis with information on
affecting CVEs, their severity and available fixes can be viewed online.

To access the report online, register for your NXP Vigiles account by following the link:

https://www.timesys.com/register-nxp-vigiles/

Additional information on the setup and execution of Vigiles can be found here:

https://github.com/TimesysGit/meta-timesys

https://www.nxp.com/vigiles

7.3.1  Configuration

Add meta-timesys to conf/bblayers.conf of your BSP build.

Follow the format of the file and add meta-timesys:

BBLAYERS += "${BSPDIR}/sources/meta-timesys"
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Append vigiles to INHERIT variable in conf/local.conf:

INHERIT += "vigiles"

7.3.2  Execution

Once meta-timesys has been added to your build, Vigiles executes a security vulnerabilities scan every time
the Linux BSP is built with Yocto. There are no additional commands needed. After each build is completed, the
vulnerability scan information is stored in the directory imx-yocto-bsp/<build dir>/vigiles.

You can view the details of the security scan through:

• Command line (summary)
• Online (details)

Simply open the file named <image name>-report.txt, which includes the link to the detailed online report.

8   Frequently Asked Questions

8.1  Quick Start
This section summarizes how to set up the Yocto Project on a Linux machine and build an image. Detailed
explanations of what this means are in the sections above.

Installing the "repo" utility

To get the BSP you need to have "repo" installed. This only needs to be done once.

$: mkdir ~/bin
$: curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$: chmod a+x ~/bin/repo
$: PATH=${PATH}:~/bin

Downloading the BSP Yocto Project Environment.

Use the correct name for the release desired in the -b option for repo init. This needs to be done once
for each release and sets the distribution for the directory created in the first step. repo sync can be run to
update the recipes under sources to the latest.

$: mkdir imx-yocto-bsp
$: cd imx-yocto-bsp
$: repo init -u  https://github.com/nxp-imx/imx-manifest -b imx-linux-scarthgap
 -m imx-6.6.23-2.0.0.xml
: repo sync

Note:

https://github.com/nxp-imx/imx-manifest/tree/imx-linux-scarthgap has a list of all manifest files supported in this
release.

Setup for Specific Backends

i.MX 8 and i.MX 9 Framebuffer is not supported. Only use these for i.MX 6 and i.MX 7 SoC.
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Setup for Framebuffer:

$: DISTRO=fsl-imx-fb MACHINE=<machine name> source imx-setup-release.sh -b
 build-fb

Setup for Wayland:

$: DISTRO=fsl-imx-wayland MACHINE=<machine name> source imx-setup-release.sh -b
 build-wayland

Setup for XWayland:

$: DISTRO=fsl-imx-xwayland MACHINE=<machine name> source imx-setup-release.sh -b
 build-xwayland

Build for All Backends

Build without Qt

$: bitbake imx-image-multimedia

Build with Qt 6 and machine learning features

$: bitbake imx-image-full

8.2  Local configuration tuning
A Yocto Project build can take considerable build resources both in time and disk usage, especially when
building in multiple build directories. There are methods to optimize this, for example, use a shared sstate cache
(caches the state of the build) and downloads directory (holds the downloaded packages). These can be set to
be at any location in the local.conf file by adding statements such as these:

DL_DIR="/opt/imx/yocto/imx/download"
SSTATE_DIR="/opt/imx/yocto/imx/sstate-cache"

The directories need to already exist and have appropriate permissions. The shared sstate helps when multiple
build directories are set, each of which uses a shared cache to minimize the build time. A shared download
directory minimizes the fetch time. Without these settings, Yocto Project defaults to the build directory for the
sstate cache and downloads.

Every package downloaded in the DL_DIR directory is marked with a <package name>.done. If your network
has a problem fetching a package, you can manually copy the backup version of package to the DL_DIR
directory and create a <package_name>.done file with the touch command. Then run the bitbake command:
bitbake <component>.

For more information, see the Yocto Project Reference Manual.

8.3  Recipes
Each component is built by using a recipe. For new components, a recipe must be created to point to the source
(SRC_URI) and specify patches, if applicable. The Yocto Project environment builds from a makefile in the
location specified by the SRC_URI in the recipe. When a build is established from auto tools, a recipe should
inherit autotools and pkgconfig. Makefiles must allow CC to be overridden by Cross Compile tools to get
the package built with Yocto Project.
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Some components have recipes but need additional patches or updates. This can be done by using a
bbappend recipe. This appends to an existing recipe details about the updated source. For example, a
bbappend recipe to include a new patch should have the following contents:

FILESEXTRAPATHS:prepend := "${THISDIR}/${PN}:"
SRC_URI += file://<patch name>.patch

FILESEXTRAPATHS_prepend tells Yocto Project to look in the directory listed to find the patch listed in
SRC_URI.

Note:

If a bbappend recipe is not picked up, view the fetch log file (log.do_fetch) under the work folder to check
whether the related patches are included or not. Sometimes a Git version of the recipe is being used instead of
the version in the bbappend files.

8.4  How to select additional packages
Additional packages can be added to images if there is a recipe provided for that package. A searchable list
of recipes provided by the community can be found at layers.openembedded.org/. You can search to see if an
application already has a Yocto Project recipe and find where to download it from.

8.4.1  Updating an image

An image is a set of packages and the environment configuration.

An image file (such as imx-image-multimedia.bb) defines the packages that go inside the file system.
Root file systems, kernels, modules, and the U-Boot binary are available in build/tmp/deploy/images/
<machine name>.

Note:

You can build packages without including it in an image, but you must rebuild the image if you want the package
installed automatically on a rootfs.

8.4.2  Package group

A package group is a set of packages that can be included on any image.

A package group can contain a set of packages. For example, a multimedia task could determine, according
to the machine, whether the VPU package is built or not, so the selection of multimedia packages may be
automated for every board supported by the BSP, and only the multimedia package is included in the image.

Additional packages can be installed by adding the following line in <build dir>/local.conf.

CORE_IMAGE_EXTRA_INSTALL:append = " <package_name1 package_name2>"

There are many package groups. They are in subdirectories named packagegroup or packagegroups.

8.4.3  Preferred version

The preferred version is used to specify the preferred version of a recipe to use for a specific component. A
component may have multiple recipes in different layers and a preferred version points to a specific version to
use.
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In the meta-imx layer, in layer.conf, preferred versions are set for all the recipes to provide a static system
for a production environment. These preferred version settings are used for formal i.MX releases but are not
essential for future development.

Preferred versions also help when previous versions may cause confusion about which recipe should be used.
For example, previous recipes for imx-test and imx-lib used a year-month versioning, which has changed
to <kernel-version> versioning. Without a preferred version, an older version might be picked up. Recipes
that have _git versions are usually picked over other recipes, unless a preferred version is set. To set a
preferred version, put the following in local.conf.

PREFERRED_VERSION_<component>:<soc family> = "<version>"

See the Yocto Project manuals for more information on using preferred versions.

8.4.4  Preferred provider

The preferred provider is used to specify the preferred provider for a specific component. A component can
have multiple providers. For example, the Linux kernel can be provided by i.MX or by kernel.org and
preferred provider states the provider to use.

For example, U-Boot is provided by both the community through denx.de and i.MX. The community provider is
specified by u-boot-fslc. The i.MX provider is specified by u-boot-imx. To state a preferred provider, put
the following in local.conf:

PREFERRED_PROVIDER_<component>:<soc family> = "<provider>"
PREFERRED_PROVIDER_u-boot_mx6 = "u-boot-imx"

8.4.5  SoC family

The SoC family documents a class of changes that apply to a specific set of system chips. In each machine
configuration file, the machine is listed with a specific SoC family. For example, i.MX 6DualLite Sabre-SD is
listed under the i.MX 6 and i.MX 6DualLite SoC families. i.MX 6Solo Sabre-auto is listed under the i.MX 6 and
i.MX 6Solo SoC families. Some changes can be targeted to a specific SoC family in local.conf to override
a change in a machine configuration file. The following is an example of a change to an mx6dlsabresd kernel
setting.

KERNEL_DEVICETREE:mx6dl = "imx6dl-sabresd.dts"

SoC families are useful when making a change that is specific only for a class of hardware. For example, i.MX
28 EVK does not have a Video Processing Unit (VPU), so all the settings for VPU should use i.MX 5 or i.MX 6 to
be specific to the correct class of chips.

8.4.6  BitBake logs

BitBake logs the build and package processes in the temp directory in tmp/work/<architecture>/
<component>/temp.

If a component fails to fetch a package, the log showing the errors is in the file log.do_fetch.

If a component fails to compile, the log showing the errors is in the file log.do_compile.

Sometimes a component does not deploy as expected. Check the directories under the build component
directory (tmp/work/<architecture>/<component>). Check the package, packages-split, and
sysroot* directories of each recipe to see if the files are placed there (where they are staged prior to being
copied to the deploy directory).
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8.4.7  How to add a mechanism for CVE monitoring and notification

The CVE tracking mechanism can be fetched from GitHub. Navigate to the directory imx-yocto-bsp/
sources.

Run the following command:

git clone https://github.com/TimesysGit/meta-timesys.git -b kirkstone

This command will download an additional metalayer that provides scripts for image manifest generation used
for security monitoring and notification as part of the Vigiles product offering from NXP and Timesys. Follow
Section 7.3 on how to use the solution.

Getting access to full CVE reporting requires a LinuxLink License Key. Without the key in your development
environment, Vigiles continues to execute in Demo Mode, producing summary reports only.

Log into your Vigiles account on LinuxLink (or create one if you do not have: https://www.timesys.com/register-
nxp-vigiles/). Access your Preferences and generate a New Key. Download the key file to your development
environment. Specify the location of the key file in your Yocto’s conf/local.conf file with the following
statement:

VIGILES_KEY_FILE = "/tools/timesys/linuxlink_key"

9   References

• For details on boot switches, see Section "How to Boot the i.MX Boards" in the i.MX Linux User's Guide
(IMXLUG_6.6.23_2.0.0).

• For how to download images using U-Boot, see Section "Downloading Images Using U-Boot" in the i.MX
Linux User's Guide (IMXLUG_6.6.23_2.0.0).

• For how to set up an SD/MMC card, see Section "Preparing an SD/MMC Card to Boot" in the i.MX Linux
User's Guide (IMXLUG_6.6.23_2.0.0).

10   Note About the Source Code in the Document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
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ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

11   Revision History

This table provides the revision history.

Document ID Date Substantive changes

IMXLXYOCTOUG_6.6.23_2.0.0 4 July 2024 Corrected a typo in the command lines in Section 4.

IMXLXYOCTOUG_6.6.23_2.0.0 28 June 2024 Upgraded to the 6.6.23 kernel, U-Boot v2024.04, TF-A
v2.10, OP-TEE 4.2.0, Yocto 5.0 Scarthgap, and added the
i.MX 91 as Alpha quality, i.MX 95 as Beta quality.

IMXLXYOCTOUG v.LF6.6.3_1.0.0 29 March 2024 Upgraded to the 6.6.3 kernel, removed the i.MX 91P, and
added the i.MX 95 as Alpha Quality.

IMXLXYOCTOUG v.LF6.1.55_2.2.0 12/2023 Upgraded to the 6.1.55 kernel.

IMXLXYOCTOUG v.LF6.1.36_2.1.0 09/2023 Upgraded to the 6.1.36 kernel and added the i.MX 91P.

IMXLXYOCTOUG v.LF6.1.22_2.0.0 06/2023 Upgraded to the 6.1.22 kernel.

IMXLXYOCTOUG v.LF6.1.1_1.0.0 04/2023 Error correction to the command lines in Section 3.2.

IMXLXYOCTOUG v.LF6.1.1_1.0.0 03/2023 Upgraded to the 6.1.1 kernel.

IMXLXYOCTOUG v.LF5.15.71_2.2.0 12/2022 Upgraded to the 5.15.71 kernel.

IMXLXYOCTOUG v.LF5.15.52_2.1.0 09/2022 Upgraded to the 5.15.52 kernel, and added the i.MX 93.

IMXLXYOCTOUG v.LF5.15.32_2.0.0 06/2022 Upgraded to the 5.15.32 kernel, U-Boot 2022.04, and
Kirkstone Yocto.

IMXLXYOCTOUG v.LF5.15.5_1.0.0 03/2022 Upgraded to the 5.15.5 kernel, Honister Yocto, and Qt6.

IMXLXYOCTOUG v.LF5.10.72_2.2.0 12/2021 Upgraded the kernel to 5.10.72 and updated the BSP.

IMXLXYOCTOUG v.LF5.10.52_2.1.0 09/2021 Updated for i.MX 8ULP Alpha and the kernel upgraded to
5.10.52.

IMXLXYOCTOUG v.LF5.10.35_2.0.0 06/2021 Upgraded to 5.10.35 kernel.

IMXLXYOCTOUG v.LF5.10.9_1.0.0 04/2021 Corrected a typo in the command lines in Section 3.1 "Host
packages".

IMXLXYOCTOUG v.LF5.10.9_1.0.0 03/2021 Upgraded to 5.10.9 kernel.

IMXLXYOCTOUG v.L5.4.70_2.3.0 01/2021 Updated the command lines in Section "Running the Arm
Cortex-M4 image".

IMXLXYOCTOUG v.L5.4.70_2.3.0 12/2020 i.MX 5.4 consolidated GA for release i.MX boards including i.
MX 8M Plus and i.MX 8DXL.

IMXLXYOCTOUG v.L5.4.47_2.2.0 09/2020 i.MX 5.4 Beta2 release for i.MX 8M Plus, Beta for 8DXL, and
consolidated GA for released i.MX boards.

IMXLXYOCTOUG v.L5.4.24_2.1.0 06/2020 i.MX 5.4 Beta release for i.MX 8M Plus, Alpha2 for 8DXL,
and consolidated GA for released i.MX boards.

IMXLXYOCTOUG v.L5.4.3_2.0.0 04/2020 i.MX 5.4 Alpha release for i.MX 8M Plus and 8DXL EVK
boards.

IMXLXYOCTOUG v.LF5.4.3_1.0.0 03/2020 i.MX 5.4 Kernel and Yocto Project Upgrades.

IMXLXYOCTOUG v.L4.19.35_1.1.0 10/2019 i.MX 4.19 Kernel and Yocto Project Upgrades.
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Document ID Date Substantive changes

IMXLXYOCTOUG v.L4.19.35_1.0.0 07/2019 i.MX 4.19 Beta Kernel and Yocto Project Upgrades.

IMXLXYOCTOUG v.L4.14.98_2.0.0_ga 04/2019 i.MX 4.14 Kernel upgrade and board updates.

IMXLXYOCTOUG v.L4.14.78_1.0.0_ga 01/2019 i.MX 6, i.MX 7, i.MX 8 family GA release.

IMXLXYOCTOUG v.L4.14.62_1.0.0_
beta

11/2018 i.MX 4.14 Kernel Upgrade, Yocto Project Sumo upgrade.

IMXLXYOCTOUG v.L4.9.123_2.3.0_
8mm

09/2018 i.MX 8M Mini GA release.

IMXLXYOCTOUG v.L4.9.88_2.2.0_
8qxp-beta2

07/2018 i.MX 8QuadXPlus Beta2 release.

IMXLXYOCTOUG v.L4.9.88_2.1.0_
8mm-alpha

06/2018 i.MX 8M Mini Alpha release.

IMXLXYOCTOUG v.L4.9.88_2.0.0-ga 05/2018 i.MX 7ULP and i.MX 8M Quad GA release.

IMXLXYOCTOUG v.L4.9.51_imx8mq-
ga

03/2018 Added i.MX 8M Quad GA.

IMXLXYOCTOUG v.L4.9.51_8qm-
beta2/8qxp-beta

02/2018 Added i.MX 8QuadMax Beta2 and i.MX 8QuadXPlus Beta.

IMXLXYOCTOUG v.L4.9.51_imx8mq-
beta

12/2017 Added i.MX 8M Quad.

IMXLXYOCTOUG v.L4.9.51_imx8qm-
beta1

12/2017 Added i.MX 8QuadMax.

IMXLXYOCTOUG v.L4.9.51_imx8qxp-
alpha

11/2017 Initial release.
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